Stonehenge and Solitaire

My visit to Stonehenge in 1994

When Management Graphics adapted their film recording technology to support motion picture film formats, it was quickly adopted by movie studios to bring special effects from their computer memory images on to film.  There were some problems however, and one of the most serious was the difficulty in obtaining the full brightness range found in typical scenes, especially when they included lights—candle light, desk lamps, car headlights, streetlights.  Any light source, even a glimpse through a window to the bright outdoors, would cause a large flare in the final film frames, washing out detail in the scene.  Our customers complained, and we started down a path to research and solve the problem.

We understood what the fundamental issue was: halation, an effect caused by the glass faceplate of the cathode ray tube used for creating the image.  The bright spot on the phosphor screen was internally reflected at the glass surface which then illuminated the phosphor coating.  If phosphor were black, this would not be a problem, but phosphor coatings are white, as are most materials made of fine powder, and it resulted in this internal reflected light overexposing the film.  In the absence of a black phosphor, there were few other ways to mitigate the halation effect.

An example of halation on a photographic film plate.  The circular haloes and flare are apparent around the street lights in this 1910 image.

One of our customers was incorporating our film recorder into a full workstation system.  Quantel, a company in Newberry, England, had become successful in the early years of digital video and was looking for a way to expand its editing tool offerings into the motion picture market.  Quantel’s engineers understood the halation problem as well, but they didn’t want to rely on our figuring out a solution: they had an aggressive development schedule. 

Continue reading

An Oscar for Solitaire

I’m occasionally asked about the Academy Award that my colleagues at Management Graphics received. It was during the early days of computer-generated special effects in motion pictures. A product I contributed to, the Solitaire Image Recorder, was selected as a technology advance worthy of the Academy’s Technical Achievement Award.  These awards are delivered in a parallel ceremony to the one we are all familiar with.  It features celebrities of a different kind: nerds.

This is the story of how my friend Rick Keeney ended up on that award stage. It has been adapted from his personal account and is a bit technical, but don’t let those details detract from the overall story line.

Rick Keeney, with the Academy Award for Technical Achievement, 1992.

Invention and Innovation

In the formative days of digital photographic imaging, output back to film was produced using specialized, often hand-built, image recorders that were difficult to align, calibrate, and keep running consistently.  As one of the early companies in the business of building and selling graphics workstations, Management Graphics (MGI) recognized that the drawbacks of the available film recorders were limiting its workstation sales.  MGI kicked off a development effort to build a film recorder that would be a robust and easy-to-use product. 

Continue reading

The Burn-Hole Club

The coils that provide the magnetic force to move the electron beam

Cathode ray tubes are a remarkable technology that incorporate many seemingly magic principles of physics.  Thermionic emission causes electrons to “boil” off a cathode, high voltage electric fields accelerate and focus them, and magnetic fields steer them to the anode screen where they energize phosphor molecules, which then re-release that energy as visible light!

While developing the electronics to control the CRT and make all this magic happen, we often had to “bring up the spot”, showing the electron beam in one static location, where it could be examined visually and measured with various instruments. 

This was always a tricky maneuver, because if the electron beam were allowed to become too intense, the energy transfer to the screen would cause it to heat up to the point where the phosphor would suddenly vaporize, leaving a dark spot that could never be lit up again.  Usually, this burn-hole was in the middle of the imaging area, and so the CRT, the single most expensive component in the system, would become instantly unusable.

To avoid this event, there was a standard procedure for bringing up the spot:  apply voltage to the CRT and gradually increase it, sneaking up on the level where the spot would become visible, and then avoid going too far.  The safe operating zone was rather small.

But even the best procedures cannot anticipate every possible experiment and test that might be needed while inventing new technology.  Consequently, there were situations where the beam accidentally and unexpectedly reached the critical phosphor burn level, and whoever was conducting that particular test suddenly realized that they had crossed the threshold and now the CRT had a permanent blemish.  They had become a member of “the burn-hole club”.

The burn-hole club comprised everyone who had suffered this unexpected event.  It was both an embarrassment, and a badge of honor.  It was awful to realize that an expensive component was now worthless, but on the other hand, the tests and experiments that we were conducting were on the cutting edge of our knowledge, the term “cutting edge” implying that injuries were part of the process.  Only brave researchers dared to push this edge forward.

I am not a member of this exclusive club, but that is because I had skilled technicians who knew far better than I how to conduct the tests I requested.  They were on the front lines of the technology.  And as a result, they were the ones first inducted into the burn-hole club.

There is one incident that deserves special mention.  It occurred during the development of the brightness calibration method, a critical part of making accurate exposures onto film.  We used a photocell at the far edge of the screen.  It needed to “see” the spot, and measure how bright it was.  The task of figuring out how to do this was assigned to Rick Keeney, who became a master of writing code to control the complexities of driving a cathode ray tube.

To solve this particular problem, Rick came up with a clever algorithm to position the beam directly under the photocell.  The exact horizontal and vertical position of the photocell is not known, at least not at first.  It needs to be located.  So Rick made a first best guess, and then refined it.  By moving the beam slightly horizontally and vertically and seeing if the light seen by the photocell increased or decreased while doing so, the beam position could be estimated.  Move the beam to where the light measurement was strongest, and that would be the location directly under the photocell.

But if the photocell light level was low, it was hard to know which way to move, so increase the intensity of the electron beam and try again.  And if that didn’t help, then it was likely that the beam was not quite where it was expected.  So move it over a little bit and try again.  This was the strategy for locating the beam and calibrating its brightness.  It worked fairly well… until it didn’t. 

On one occasion, the beam could not be detected at all.  The algorithm increased the intensity trying to measure the light, but as it did so, burned the phosphor in its path.  When it failed to detect the beam, it moved over a little bit and burned the phosphor there too.  Since the beam was still not detected, it was moved a little more and tried again.  The algorithm didn’t have a limit check on position, so it marched all the way across the full width of the screen, leaving behind a tire-track of vaporized phosphor.

This was a spectacular example of damage by electron bombardment, and Rick Keeney, in addition to being an Academy Award winner, also holds the prime honor in the burn-hole club.  And I have the privilege of curating the resulting damaged tube.

The trail of damaged phosphor, leading right off the edge of the screen.
Rick with a more public acknowledgement of his skills in pushing the cutting edge of science and technology.

previous | next

Cathode Rays

The 100th anniversary of the cathode ray tube.

This is the first of three posts describing a now-(nearly)-obsolete technology.

Thomas Edison nearly discovered them.  In his experiments with heated filaments in evacuated glass bulbs trying to find a suitable incandescent lamp, there were hints.  He noticed depositions of material on the walls of the glass tubes.  Many scientific discoveries are preceded not by the expression “Eureka”, but instead by the comment: “Hmm, that’s funny”.  If he had followed up on this odd result, he might have also invented the vacuum tube amplifier.

Continue reading

The Color of the Moon

I was 16 years old when Apollo-11 landed on the moon.  Color television had been invented but most TVs were still black and white.  I had seen a few color televisions on display and in other homes, but the color was usually awful, partly because the broadcasting signals had to be compatible with black and white sets. 

Continue reading

Career’s End

From my gun collection: an electron gun, extracted from a cathode ray tube

After years of fearing the consequences of corporate RIFs (“reduction in force”), aka layoffs, and having survived a dozen or more of them, I had finally reached the point where losing my job would have a lesser consequence.  I had built up my savings in anticipation of some future retirement and was now working for the sheer pleasure of it.  

I had always declared that if the work became tiresome or that I was no longer learning things, I would move on to something else.  But those conditions never happened, and at age 65, a time when many decide to hang it up for an easier day, I found that my company was still interested in what I had to offer.  I continued my happy employment, pleased to be paid for work that was valued.

That changed this last summer, when the company was acquired by a venture capital firm that offered a stock premium in exchange for taking it private and pursuing a new business plan. I hope that the company will thrive and continue their pioneering transformation of the print industry from analog presses to digital, but I will not be there to see it.  

My ride along that road has ended, as the new management has deemed my color imaging scientist position no longer required.  Though I will miss the technical challenges and problem-solving, this actually works out well for me.  

I had been wondering how to transition to part-time status in order to more fully engage in the activities promoted by my travel-addicted partner.  Further, I have no shortage of personal projects that have been put on hold over the years, and new ones that are still being formulated.  I contemplated what would happen if the daytime hours suddenly became available to pursue them.

I am currently finishing up my work for the company and clearing my office.  Decades of projects have left behind strata of artifacts: notebooks, schematics, prototypes, presentations, test prints, research papers, and a myriad of business cards of professional contacts. As I encounter them, I must perform a version of triage:  discard/recycle, preserve for whomever next takes them on, or claim them for my personal scrapbook, including the “distributed computer museum”.  It is all a trigger for nostalgia.

I don’t have time for reminiscing now though.  To plow through it, I make the unreliable promise to review it again later, when I can properly share it with the people that I worked with, and the families that lived through it.  I will attempt to craft a proper story around each artifact.  Maybe they will serve as an informal history of the life and times of what has been a wonderful and fascinating career.